

Sol.

required area is $a + \int_0^1 (a + e^x - e^{-x}) dx$

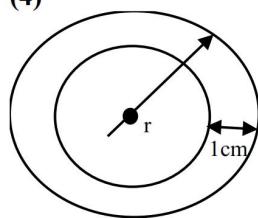
$$a + \left[a + e^x + e^{-x} \right]_0^1$$

$$2a + e - 1 + e^{-1} - 1 = e + 8 + \frac{1}{e}$$

$$2a = 10 \Rightarrow a = 5$$

9. A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of $81 \text{ cm}^3/\text{min}$ and the thickness of the ice-cream layer decreases at the rate of $\frac{1}{4\pi} \text{ cm/min}$. The surface area (in cm^2) of the chocolate ball (without the ice-cream layer) is :

(1) 225π


(2) 128π

(3) 196π

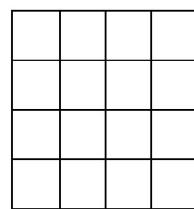
(4) 256π

Ans. (4)

Sol

$$v = \frac{4}{3}\pi r^3$$

$$\frac{dv}{dt} = 4\pi r^2 \frac{dr}{dt}$$


$$81 = 4\pi r^2 \times \frac{1}{4\pi}$$

$$r^2 = 81$$

$$r = 9$$

$$\text{surface area of chocolate} = 4\pi(r-1)^2 = 256\pi$$

10. A board has 16 squares as shown in the figure :

Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is :

(1) $\frac{4}{5}$ (2) $\frac{7}{10}$

(3) $\frac{3}{5}$ (4) $\frac{23}{30}$

Ans. (1)

Sol. Total ways for selecting any two squares $= {}^{16}C_2$
 $= 120$

Total ways for selecting common side squares

$$= \underbrace{3 \times 4}_{\text{Horizontal side}} + \underbrace{3 \times 4}_{\text{vertical side}}$$

$$= 24$$

so required probability

$$= 1 - \frac{24}{120}$$

$$= \frac{4}{5}$$

11. Let $x = x(y)$ be the solution of the differential equation

$$y = \left(x - y \frac{dx}{dy} \right) \sin \left(\frac{x}{y} \right), y > 0 \text{ and } x(1) = \frac{\pi}{2}.$$

Then $\cos(x(2))$ is equal to :

(1) $1 - 2(\log_e 2)^2$ (2) $2(\log_e 2)^2 - 1$
 (3) $2(\log_e 2) - 1$ (4) $1 - 2(\log_e 2)$

Ans. (2)

Sol. $y dy = (x dy - y dx) \sin \left(\frac{x}{y} \right)$

$$\frac{dy}{y} = \left(\frac{x dy - y dx}{y^2} \right) \sin \left(\frac{x}{y} \right)$$

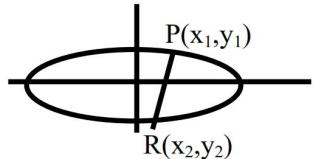
$$\frac{dy}{y} = \sin \left(\frac{x}{y} \right) d \left(-\frac{x}{y} \right)$$

$$\Rightarrow \ellny = \cos \frac{x}{y} + C$$

15. The length of the chord of the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is:

(1) $\frac{2}{3}\sqrt{15}$ (2) $\frac{5}{3}\sqrt{15}$
 (3) $\frac{1}{3}\sqrt{15}$ (4) $\sqrt{15}$

Ans. (1)


Sol. $T = S_1$

$$\frac{x \cdot 1}{4} + \frac{y \cdot \frac{1}{2}}{2} = \frac{1}{4} + \frac{1}{8}$$

$$x + y = \frac{3}{2}$$

solve with ellipse

$$\begin{aligned} PR &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{2}|x_2 - x_1| \end{aligned}$$

$$y_2 = \frac{3}{2} - x_2$$

$$y_1 = \frac{3}{2} - x_1$$

$$y_2 - y_1 = x_2 - x_1$$

$$x^2 + 2y^2 = 4$$

$$x^2 + 2\left(\frac{3}{2} - x\right)^2 = 4$$

$$6x^2 - 12x + 1 = 0$$

$$x_1 + x_2 = 2$$

$$x_1 x_2 = 1/6$$

$$\begin{aligned} |x_2 - x_1| &= \sqrt{(x_2 + x_1)^2 - 4x_1 x_2} \\ &= \sqrt{4 - 4/6} \end{aligned}$$

$$PR = \sqrt{2} \cdot 2 \cdot \frac{\sqrt{5}}{\sqrt{2} \sqrt{3}} = \frac{2}{3} \sqrt{15}$$

16. Let $A = [a_{ij}]$ be a 3×3 matrix such that

$$A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, A \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } A \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \text{ then}$$

a_{23} equals:

(1) -1 (2) 0
 (3) 2 (4) 1

Ans. (1)

Sol. Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

$$A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow a_{22} = 0; a_{12} = 0$$

$$A \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 4a_{11} + a_{12} + 3a_{13} \\ 4a_{21} + a_{22} + 3a_{23} \\ 4a_{31} + a_{32} + 3a_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow 4a_{11} + a_{12} + 3a_{13} = 0$$

$$A \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2a_{11} + a_{12} + 2a_{13} \\ 2a_{21} + a_{22} + 2a_{23} \\ 2a_{31} + a_{32} + 2a_{33} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow 2a_{11} + a_{12} + 2a_{13} = 1$$

$$2a_{21} + a_{22} + 2a_{23} = 0 \Rightarrow a_{21} + a_{23} = 0$$

$$2a_{31} + a_{32} + 2a_{33} = 0$$

$$-4a_{23} + 3a_{23} = 1 \Rightarrow a_{23} = -1$$

17. The number of complex numbers z , satisfying $|z| = 1$

and $\left| \frac{z}{\bar{z}} + \frac{\bar{z}}{z} \right| = 1$, is :

(1) 6 (2) 4
 (3) 10 (4) 8

Ans. (4)

Sol. $z = e^{i\theta}$

$$\frac{z}{\bar{z}} = e^{i2\theta}$$

$$\left| \frac{z}{\bar{z}} + \frac{\bar{z}}{z} \right| = 1 \Rightarrow \left| e^{i2\theta} + e^{-i2\theta} \right| = 1 \Rightarrow |\cos 2\theta| = \frac{1}{2}$$

8 solution in $[0, 2\pi]$

18. If the square of the shortest distance between the lines $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z+3}{-3}$ and $\frac{x+1}{2} = \frac{y+3}{4} = \frac{z+5}{-5}$

is $\frac{m}{n}$, where m, n are coprime numbers, then $m + n$ is equal to:

(1) 6 (2) 9
 (3) 21 (4) 14

Ans. (2)

Sol. $\vec{a} = (2, 1, -3)$

$\vec{b} = (-1, -3, -5)$

$$\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix} = 2\hat{i} - \hat{j}$$

$\vec{b} - \vec{a} = -3\hat{i} - 4\hat{j} - 2\hat{k}$

$$S_d = \frac{|(\vec{b} - \vec{a}) \cdot (\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|} = \frac{2}{\sqrt{5}}$$

$$(S_d)^2 = \frac{4}{5}$$

$m = 4, n = 5 \Rightarrow m + n = 9$

19. If $I = \int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{3}{2}} x}{\sin^2 x + \cos^2 x} dx$,

then $\int_0^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$ equals:

(1) $\frac{\pi^2}{16}$

(2) $\frac{\pi^2}{4}$

(3) $\frac{\pi^2}{8}$

(4) $\frac{\pi^2}{12}$

Ans. (1)

Sol. For I

Apply king (P-5) and add

$$2I = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}$$

$$I_2 = \int_0^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$$

Apply king and add

$$I_2 = \frac{\pi}{4} \int_0^{\frac{\pi}{2}} \frac{\tan x \sec^2 x dx}{\tan^4 x + 1}$$

put $\tan^2 x = t$

$$\frac{\pi}{8} \int_0^{\infty} \frac{dt}{t^2 + 1}$$

$$= \frac{\pi}{8} \cdot \frac{\pi}{2} = \frac{\pi^2}{16}$$

20. $\lim_{x \rightarrow \infty} \frac{(2x^2 - 3x + 5)(3x - 1)^{\frac{x}{2}}}{(3x^2 + 5x + 4)\sqrt{(3x + 2)^x}}$ is equal to:

(1) $\frac{2}{\sqrt{3e}}$

(2) $\frac{2e}{\sqrt{3}}$

(3) $\frac{2e}{3}$

(4) $\frac{2}{3\sqrt{e}}$

Ans. (4)

$$\lim_{x \rightarrow \infty} \frac{\left(2 - \frac{3}{x} + \frac{5}{x^2}\right) \left(1 - \frac{1}{3x}\right)^{x/2}}{\left(3 + \frac{5}{x} + \frac{4}{x^2}\right) \left(1 + \frac{2}{3x}\right)^{x/2}}$$

$$= \lim_{x \rightarrow \infty} \frac{2 \cdot e^{\frac{x}{2} \left(1 - \frac{1}{3x} - 1\right)}}{3 \cdot e^{\frac{x}{2} \left(1 + \frac{2}{3x} - 1\right)}}$$

$$= \frac{2}{3} \cdot \frac{e^{-\frac{1}{6}}}{e^{1/3}} = \frac{2}{3} e^{-\frac{1}{2}}$$

SECTION-B

21. The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is _____.

Ans. (17280)

Sol. A : number of ways that all boys sit together = $5! \times 5!$

B : number of ways if no 2 boys sit together = $4! \times 5!$

$$A \cap B = \emptyset$$

Required no. of ways = $5! \times 5! + 4! \times 5! = 17280$

22. Let α, β be the roots of the equation $x^2 - ax - b = 0$ with $\text{Im}(\alpha) < \text{Im}(\beta)$. Let $P_n = \alpha^n - \beta^n$. If $P_3 = -5\sqrt{7}i$, $P_4 = -3\sqrt{7}i$, $P_5 = 11\sqrt{7}i$ and $P_6 = 45\sqrt{7}i$, then $|\alpha^4 + \beta^4|$ is equal to _____.

Ans. (31)

Sol. $\alpha + \beta = a$ $\alpha\beta = -b$

$$P_6 = aP_5 + bP_4$$

$$45\sqrt{7}i = a \times 11\sqrt{7}i + b(-3\sqrt{7})i$$

$$45 = 11a - 3b \quad \dots(1)$$

and

$$P_5 = aP_4 + bP_3$$

$$11\sqrt{7}i = a(-3\sqrt{7}i) + b(-5\sqrt{7}i)$$

$$11 = -3a - 5b \quad \dots(2)$$

$$a = 3, b = -4$$

$$|\alpha^4 + \beta^4| = \sqrt{(\alpha^4 - \beta^4)^2 + 4\alpha^4\beta^4}$$

$$= \sqrt{-63 + 4.4^4}$$

$$= \sqrt{-63 + 1024} = \sqrt{961} = 31$$

23. The focus of the parabola $y^2 = 4x + 16$ is the centre of the circle C of radius 5. If the values of λ , for which C passes through the point of intersection of the lines $3x - y = 0$ and $x + \lambda y = 4$, are λ_1 and λ_2 , $\lambda_1 < \lambda_2$, then $12\lambda_1 + 29\lambda_2$ is equal to _____.

Ans. (15)

Sol. $y^2 = 4(x + 4)$

Equation of circle

$$(x + 3)^2 + y^2 = 25$$

Passes through the point of intersection of two lines $3x - y = 0$ and $x + \lambda y = 4$ which is

$$\left(\frac{4}{3\lambda + 1}, \frac{12}{3\lambda + 1} \right), \text{ after solving with circle,}$$

we get

$$\lambda = -\frac{7}{6}, 1$$

$$12\lambda_1 + 29\lambda_2$$

$$-14 + 29 = 15$$

24. The variance of the numbers 8, 21, 34, 47, ..., 320, is _____.

Ans. (8788)

Sol. $\text{Var}(8, 21, 34, 47, \dots, 320)$

$$\text{Var}(0, 13, 26, 39, \dots, 312)$$

$$13^2 \cdot \text{Var}(0, 1, 2, \dots, 24)$$

$$13^2 \cdot \text{Var}(1, 2, 3, \dots, 25)$$

$$\text{So, } \sigma^2 = 13^2 \times \left(\frac{25^2 - 1}{12} \right) = 8788$$

Alternate solution

$$8 + (n-1)13 = 320$$

$$13n = 325$$

$$n = 25$$

no. of terms = 25

$$\text{mean} = \frac{\sum x_i}{n} = \frac{8 + 21 + \dots + 320}{25} = \frac{\frac{25}{2}(8 + 320)}{25}$$

$$\text{variance } \sigma^2 = \frac{\sum x_i^2}{n} - (\text{mean})^2$$

$$= \frac{8^2 + 21^2 + \dots + 320^2}{13} - (164)^2$$

$$= 8788$$

25. The roots of the quadratic equation $3x^2 - px + q = 0$ are 10th and 11th terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88, then $q - 2q$ is equal to _____.

Ans. (474)

Sol. $S_{11} = \frac{11}{2}(2a + 10d) = 88$

$$a + 5d = 8$$

$$a = 8 - 5d = \frac{1}{2} + 9 \times \frac{3}{2} = \frac{1}{2}$$

Roots are

$$T_{10} = a + 9d = \frac{1}{2} + 9 \times \frac{3}{2} = 14$$

$$T_{11} = a + 10d = \frac{1}{2} + 10 \times \frac{3}{2} = \frac{31}{2}$$

$$\frac{p}{3} = T_{10} + T_{11} = 14 + \frac{31}{2} = \frac{59}{2}$$

$$p = \frac{177}{2}$$

$$\frac{q}{3} = T_{10} \times T_{11} = 7 \times 31 = 217$$

$$q = 651$$

$$q - 2p$$

$$= 651 - 177$$

$$= 474$$

PHYSICS

SECTION-A

26. A ball having kinetic energy KE, is projected at an angle of 60° from the horizontal. What will be the kinetic energy of ball at the highest point of its flight?

$$\begin{array}{ll} (1) \frac{(KE)}{8} & (2) \frac{(KE)}{4} \\ (3) \frac{(KE)}{16} & (4) \frac{(KE)}{2} \end{array}$$

Ans. (2)

Sol. Initial K.E,

$$K.E. = \frac{1}{2} m u^2$$

Speed at highest point

$$V = u \cos 60^\circ = \frac{u}{2}$$

$$\therefore KE_2 = \frac{1}{2} m \left(\frac{u}{2} \right)^2$$

$$= \frac{1}{4} \times \frac{1}{2} m u^2$$

$$= \frac{KE}{4}$$

27. Two charges $7 \mu C$ and $-4 \mu C$ are placed at $(-7 \text{ cm}, 0, 0)$ and $(7 \text{ cm}, 0, 0)$ respectively. Given, $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$, the electrostatic potential energy of the charge configuration is :

$$\begin{array}{ll} (1) -1.5 \text{ J} & (2) -2.0 \text{ J} \\ (3) -1.2 \text{ J} & (4) -1.8 \text{ J} \end{array}$$

Ans. (4)

Sol. P.E. of two charges

$$u = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$= 14 \text{ cm}$$

$$\therefore u = \frac{9 \times 10^9 \times 7 \times 10^{-6} \times (-4) \times 10^{-6}}{14 \times 10^{-2}}$$

$$= -1.8 \text{ J}$$

28. The refractive index of the material of a glass prism is $\sqrt{3}$. The angle of minimum deviation is equal to the angle of the prism. What is the angle of the prism?

$$\begin{array}{ll} (1) 50^\circ & (2) 60^\circ \\ (3) 58^\circ & (4) 48^\circ \end{array}$$

Ans. (2)

$$\text{Sol. } \mu = \frac{\sin \left(\frac{A + \delta_{\min}}{2} \right)}{\sin \frac{A}{2}}$$

$$\text{Given } \delta_{\min} = A$$

$$\sqrt{3} = \frac{\sin A}{\sin \frac{A}{2}} = \frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{\sin \frac{A}{2}}$$

$$\cos \frac{A}{2} = \frac{\sqrt{3}}{2}$$

$$A = 60^\circ$$

29. The equation of a transverse wave travelling along a string is $y(x, t) = 4.0 \sin [20 \times 10^{-3} x + 600t] \text{ mm}$, where x is in the mm and t is in second. The velocity of the wave is :

$$\begin{array}{ll} (1) +30 \text{ m/s} & (2) -60 \text{ m/s} \\ (3) -30 \text{ m/s} & (4) +60 \text{ m/s} \end{array}$$

Ans. (3)

$$\text{Sol. } y = 4 \sin (20 \times 10^{-3} x + 600 t)$$

$$\begin{array}{ll} \text{Here} & \omega = 600 \text{ s}^{-1} \\ & k = 20 \times 10^{-3} \text{ mm}^{-1} \end{array}$$

$$\therefore v = \frac{w}{k} = \frac{600}{20 \times 10^{-3}}$$

$$\begin{aligned} &= 30 \times 10^3 \text{ mm/s} \\ &= 30 \text{ m/s} \end{aligned}$$

& direction is towards -ve x axis

$$\therefore v = -30 \text{ m/s}$$

30. The energy of a system is given as $E(t) = \alpha^3 e^{-\beta t}$, where t is the time and $\beta = 0.3 \text{ s}^{-1}$. The errors in the measurement of α and t are 1.2% and 1.6%, respectively. At $t = 5 \text{ s}$, maximum percentage error in the energy is :

(1) 4% (2) 11.6%
 (3) 6% (4) 8.4%

Ans. (3)

Sol. $E = \alpha^3 e^{-\beta t}$

$$\begin{aligned} \ln E &= 3 \ln \alpha - \beta t \\ \left(\frac{dE}{E} \right)_{\text{max}} &= \frac{3d\alpha}{\alpha} + \beta \frac{dt}{t} \times t \\ &= 3 \times 1.2\% + (0.3 \times 1.6 \times 5)\% \\ &= 6\% \end{aligned}$$

31. In photoelectric effect an em-wave is incident on a metal surface and electrons are ejected from the surface. If the work function of the metal is 2.14 eV and stopping potential is 2V, what is the wavelength of the em-wave?

(Given $hc = 1242 \text{ eV nm}$ where h is the Planck's constant and c is the speed of light in vacuum.)

(1) 400 nm (2) 600 nm
 (3) 200 nm (4) 300 nm

Ans. (4)

Sol. $eV_s = E - \phi$

$$2 \text{ eV} = E - 2.14 \text{ eV}$$

$$E = 4.14 \text{ eV}$$

$$E = \frac{hc}{\lambda}$$

$$\lambda = \frac{1242}{4.14} = 300 \text{ nm}$$

32. A circular disk of radius R meter and mass M kg is rotating around the axis perpendicular to the disk. An external torque is applied to the disk such that $\theta(t) = 5t^2 - 8t$, where $\theta(t)$ is the angular position of the rotating disc as a function of time t .

How much power is delivered by the applied torque, when $t = 2 \text{ s}$?

(1) 60 MR^2 (2) 72 MR^2
 (3) 108 MR^2 (4) 8 MR^2

Ans. (1)

Sol. $\theta = 5t^2 - 8t$

$$\omega = \frac{d\theta}{dt} = 10t - 8$$

$$\alpha = \frac{d\omega}{dt} = 10$$

$$\therefore p = \tau \omega$$

$$= (I\alpha) \omega$$

$$= \left(\frac{mR^2}{2} \right) \alpha \omega$$

$$= \left(\frac{mR^2}{2} \right) (10) (10t - 8)$$

$$\text{Put } t = 2$$

$$p = 60 \text{ mR}^2$$

33. Water flows in a horizontal pipe whose one end is closed with a valve. The reading of the pressure gauge attached to the pipe is P_1 . The reading of the pressure gauge falls to P_2 when the valve is opened. The speed of water flowing in the pipe is proportional to

(1) $\sqrt{P_1 - P_2}$ (2) $(P_1 - P_2)^2$
 (3) $(P_1 - P_2)^4$ (4) $P_1 - P_2$

Ans. (1)

Sol. By Bernoulli equation

$$P_1 + \frac{1}{2} \times \rho \times 0^2 = P_2 + \frac{1}{2} \rho V^2$$

$$V = \sqrt{2\rho(P_1 - P_2)}$$

34. Match **List-I** with **List-II**.

List-I **List-II**

(A) Permeability of free space	(I) $[M L^2 T^{-2}]$
(B) Magnetic field	(II) $[M T^{-2} A^{-1}]$
(C) Magnetic moment	(III) $[M L T^{-2} A^{-2}]$
(D) Torsional constant	(IV) $[L^2 A]$

Choose the **correct** answer from the options given below :

(1) (A)-(I), (B)-(IV), (C)-(II), (D)-(III)
 (2) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)
 (3) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
 (4) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)

Ans. (4)

39. Given below are two statements. One is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A) : The binding energy per nucleon is found to be practically independent of the atomic number A, for nuclei with mass numbers between 30 and 170.

Reason (R) : Nuclear force is long range.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) (A) is false but (R) is true
- (2) (A) is true but (R) is false
- (3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (4) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)

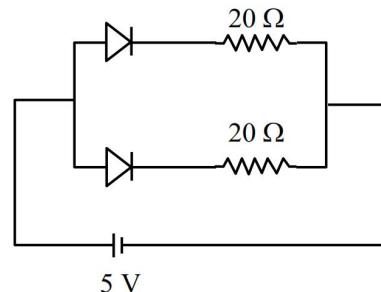
Ans. (2)

Sol. Conceptual

40. Water of mass m gram is slowly heated to increase the temperature from T_1 to T_2 . The change in entropy of the water, given specific heat of water is $1 \text{ Jkg}^{-1}\text{K}^{-1}$, is :

- (1) zero
- (2) $m(T_2 - T_1)$
- (3) $m \ln\left(\frac{T_1}{T_2}\right)$
- (4) $m \ln\left(\frac{T_2}{T_1}\right)$

Ans. (4)


Sol. $dQ = msdT$

$$dS = \frac{dQ}{T} = \frac{msdT}{T}$$

$$\Delta S = \int \frac{msdT}{T} = ms \ln \frac{T_f}{T_i}$$

$$\Delta S = m \ln \frac{T_2}{T_1}$$

41. What is the current through the battery in the circuit shown below?

- (1) 1.0 A
- (2) 1.5 A
- (3) 0.5 A
- (4) 0.25 A

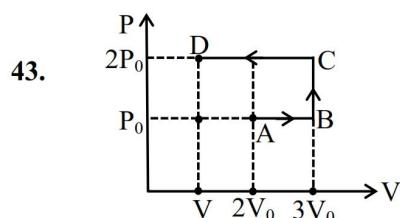
Ans. (3)

Sol. Both are forward biased

$$\text{hence } R_{eq} = 10 \Omega$$

$$i = \frac{V}{R} = \frac{5}{10} = \frac{1}{2} \text{ A}$$

42. A plane electromagnetic wave of frequency 20 MHz travels in free space along the $+x$ direction. At a particular point in space and time, the electric field vector of the wave is $E_y = 9.3 \text{ Vm}^{-1}$. Then, the magnetic field vector of the wave at that point is-


- (1) $B_z = 9.3 \times 10^{-8} \text{ T}$
- (2) $B_z = 1.55 \times 10^{-8} \text{ T}$
- (3) $B_z = 6.2 \times 10^{-8} \text{ T}$
- (4) $B_z = 3.1 \times 10^{-8} \text{ T}$

Ans. (4)

Sol. $E = BC$

$$9.3 = B \times 3 \times 10^8$$

$$B = \frac{9.3}{3 \times 10^8} = 3.1 \times 10^{-8} \text{ T}$$

Using the given P-V diagram, the work done by an ideal gas along the path ABCD is-

- (1) $4 P_0 V_0$
- (2) $3 P_0 V_0$
- (3) $-4 P_0 V_0$
- (4) $-3 P_0 V_0$

Ans. (4)

Sol. $W_{ABCD} = W_{AB} + W_{BC} + W_{CD}$
 $= P_0 V_0 + 0 + (-2P_0 \times 2V_0)$
 $= P_0 V_0 - 4P_0 V_0$
 $= -3P_0 V_0$

44. A concave mirror of focal length f in air is dipped in a liquid of refractive index μ . Its focal length in the liquid will be :

(1) $\frac{f}{\mu}$ (2) $\frac{f}{(\mu-1)}$
(3) μf (4) f

Ans. (4)

Sol. Focal length of mirror will not change because focal length of mirror doesn't depend on medium.

45. A massless spring gets elongated by amount x_1 under a tension of 5N. Its elongation is x_2 under the tension of 7N. For the elongation of $(5x_1 - 2x_2)$, the tension in the spring will be,
(1) 15 N (2) 20 N
(3) 11 N (4) 39 N

Ans. (3)

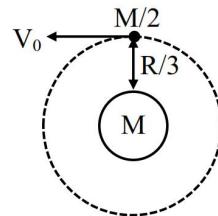
Sol. $kx_1 = 5N$
 $kx_2 = 7N$
 $k(5x_1 - 2x_2) = 5kx_1 - 2kx_2$
 $= 5 \times 5 - 2 \times 7 = 11 N$

SECTION-B

46. An air bubble of radius 1.0 mm is observed at a depth of 20 cm below the free surface of a liquid having surface tension 0.095 J/m² and density 10³ kg/m³. The difference between pressure inside the bubble and atmospheric pressure _____ N/m². (Take g = 10 m/s²)

Ans. (2190)

Sol.

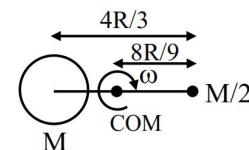

$$P_{in} = P_0 + \rho gh + \frac{2T}{R}$$

$$\begin{aligned} \Delta P &= P_{in} - P_0 \\ &= \rho gh + \frac{2T}{R} = \frac{1000 \times 10 \times 20}{100} + \frac{2 \times 0.095}{10^{-3}} \\ &= 2000 + 190 \\ &= 2190 \end{aligned}$$

47. A satellite of mass $\frac{M}{2}$ is revolving around earth in a circular orbit at a height of $\frac{R}{3}$ from earth surface. The angular momentum of the satellite is $M\sqrt{\frac{GMR}{x}}$. The value of x is _____, where M and R are the mass and radius of earth, respectively. (G is the gravitational constant)

Ans. (3)

Sol. (i) If earth is assumed to be stationary



$$\text{orbital velocity } v_0 = \sqrt{\frac{GM}{4R/3}} = \sqrt{\frac{3GM}{4R}}$$

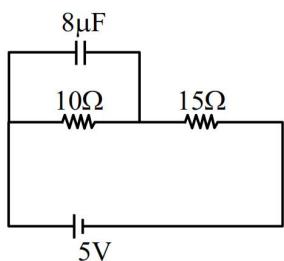
$$\begin{aligned} \text{Angular momentum of satellite} &= \frac{M}{2} v_0 \frac{4R}{3} \\ &= \frac{M}{2} \cdot \sqrt{\frac{3GM}{4R}} \cdot \frac{4R}{3} \\ &= M \sqrt{\frac{GMR}{3}} \end{aligned}$$

$$x = 3$$

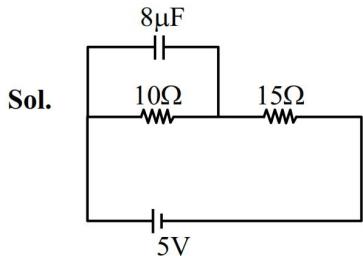
(ii) Since mass of satellite is comparable to the mass of earth.

$$\frac{G.M. \frac{M}{2}}{\left(\frac{4R}{3}\right)^2} = \frac{M}{2} \omega^2 \cdot \frac{8R}{9}$$

$$\omega = \sqrt{\frac{81GM}{128R^3}}$$


Angular momentum of satellite about common centre of mass,

$$L = \frac{M}{2} \cdot \left(\frac{8R}{9}\right)^2 \cdot \omega$$


$$L = M \sqrt{GMR \left(\frac{8}{81}\right)}$$

$$x = \frac{81}{8} \approx 10$$

48. At steady state the charge on the capacitor, as shown in the circuit below, is _____ μC .

Ans. (16)

$$i = \left(\frac{5}{25} \right)$$

$$Q = CV$$

$$Q = (8 \times 10^{-6}) \left(\frac{5}{25} \times 10 \right)$$

$$Q = \left(\frac{8 \times 5 \times 10^{-2}}{25} \right) = 16 \mu\text{C}$$

49. A time varying potential difference is applied between the plates of a parallel plate capacitor of capacitance $2.5 \mu\text{F}$. The dielectric constant of the medium between the capacitor plates is 1. It produces an instantaneous displacement current of 0.25 mA in the intervening space between the capacitor plates, the magnitude of the rate of change of the potential difference will be _____ Vs^{-1} .

Ans. (100)

Sol. $\frac{CdV}{dt} = I_d$

$$\frac{dV}{dt} = \frac{I_d}{C}$$

$$= \frac{0.25 \times 10^{-3}}{2.5 \times 10^{-6}}$$

$$= 100$$

50. In a series LCR circuit, a resistor of 300Ω , a capacitor of 25 nF and an inductor of 100 mH are used. For maximum current in the circuit, the angular frequency of the ac source is _____ $\times 10^4$ radians s^{-1} .

Ans. (2)

Sol. $\omega = \frac{1}{\sqrt{LC}}$

$$\omega = \frac{1}{\sqrt{25 \times 10^{-9} \times 100 \times 10^{-3}}}$$

$$\omega = \frac{10^{+6}}{5 \times 10} = 2$$

CHEMISTRY

SECTION-A

51. The effect of temperature on spontaneity of reactions are represented as:

ΔH	ΔS	Temperature	Spontaneity
(A) +	-	any T	Non spontaneous
(B) +	+	low T	spontaneous
(C) -	-	low T	Non spontaneous
(D)	+	any T	spontaneous
	(1) (B) and (D) only		
	(2) (A) and (D) only		
	(3) (B) and (C) only		
	(D) (A) and (C) only		

Ans. (3)

Sol. $\because \Delta G = \Delta H - T\Delta S$

For spontaneity of reaction : $\Delta G = -ve$

52. Standard electrode potentials for a few half cells are mentioned below:

$$E_{Cu^{2+}/Cu}^{\circ} = 0.34V, E_{Zn^{2+}/Zn}^{\circ} = -0.76V$$

$$E_{Ag^{+}/Ag}^{\circ} = 0.80V, E_{Mg^{2+}/Mg}^{\circ} = -2.37V$$

Which one of the following cells gives the most negative value of ΔG° ?

- (1) $Zn|Zn^{2+} (1M)||Ag^{+} (1M) | Ag$
- (2) $Zn|Zn^{2+} (1M)||Mg^{2+} (1M) | Mg$
- (3) $Ag|Ag^{+} (1M)||Mg^{2+} (1M) | Mg$
- (4) $Cu | Cu^{2+} (1M)||Ag^{+} (1M) | Ag$

Ans. (1)

Sol. $\because \Delta G^{\circ} = -nFE^{\circ}$

$$\text{Option (1)} E^{\circ} = 0.8 + 0.76$$

$$= 1.56V$$

$$\therefore \Delta G^{\circ} = -2 \times F \times 1.56$$

$$= -3.12V$$

$$\text{Option (2)} E^{\circ} = -2.37 + 0.76$$

$$= -1.61V$$

$$\therefore \Delta G^{\circ} = -2 \times F \times (-1.61)$$

$$= +3.22V$$

$$\text{Option (3)} E^{\circ} = -2.37 - 0.8$$

$$= -3.17V$$

$$\therefore \Delta G^{\circ} = -2 \times F \times (-3.17)$$

$$= +6.34$$

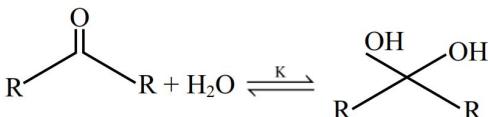
$$\text{Option (4)} E^{\circ} = 0.8 - 0.34$$

$$= 0.46V$$

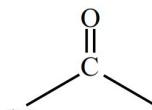
$$\Delta G^{\circ} = -2 \times F \times 0.46$$

$$= -0.92V$$

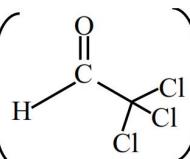
53. The α - Helix and β - Pleated sheet structures of protein are associated with its:


- (1) quaternary structure
- (2) primary structure
- (3) secondary structure
- (4) tertiary structure

Ans. (3)


Sol. α -helix and β -pleated sheet belongs to secondary structure of protein, which have hydrogen bonds.

54. Given below are two statements:


Consider the following reaction

Statement (I) : In the case of formaldehyde

 K is about 2280, due to small substituents, hydration is faster.

Statement (II) : In the case of trichloro

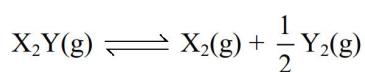
acetaldehyde K is about 2000

due to $-I$ effect of $-Cl$.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) **Statement I** true but **Statement II** is false
- (2) Both **Statement I** and **Statement II** are true
- (3) **Statement I** is false but **Statement II** is true
- (4) Both **Statement I** and **Statement II** are false

Ans. (2)


Sol. $k_{eq} = 2280$ is for HCHO

$k_{eq} = 2000$ is for chloral

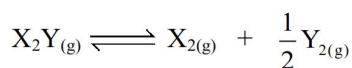
Both data is given in clayden and warren book.

$k_{eq} > 1$ because HCHO and chloral are more electrophilic.

55. Consider the reaction

The equation representing correct relationship between the degree of dissociation (x) of $X_2Y(g)$ with its equilibrium constant K_p is _____. Assume x to be very very small.

$$(1) x = \sqrt[3]{\frac{2K_p}{P}}$$


$$(2) x = \sqrt[3]{\frac{2K_p^2}{P}}$$

$$(3) x = \sqrt[3]{\frac{K_p}{2P}}$$

$$(4) x = \sqrt[3]{\frac{K_p}{P}}$$

Ans. (2)

Sol. 1 mole

$$1-x \text{ mole} \quad x \text{ mole} \quad \frac{x}{2} \text{ mole}$$

$$\therefore P_{X_2Y} = \frac{1-x}{1+\frac{x}{2}} \times P$$

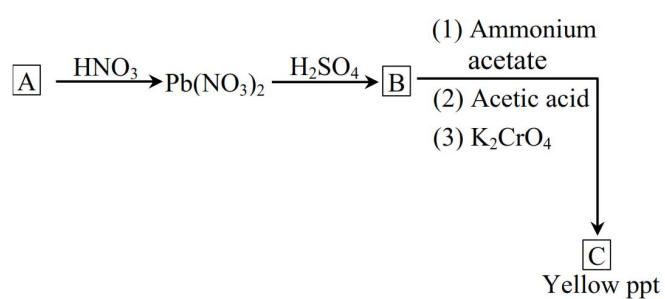
$$P_{X_2} = \frac{x}{1+\frac{x}{2}} \times P$$

$$P_{Y_2} = \frac{x/2}{1+\frac{x}{2}} \times P$$

$$\therefore K_p = \left(\frac{x}{1+\frac{x}{2}} P \right) \left(\frac{x}{2\left(1+\frac{x}{2}\right)} P \right)^{\frac{1}{2}} \left(\frac{1-x}{1+\frac{x}{2}} \right) \times P$$

$$\therefore K_p = \left(\frac{x}{1-x} \right) \left(\frac{x}{2\left(1+\frac{x}{2}\right)} \right)^{\frac{1}{2}} \times P^{\frac{1}{2}}$$

$\therefore x$ to be very very small

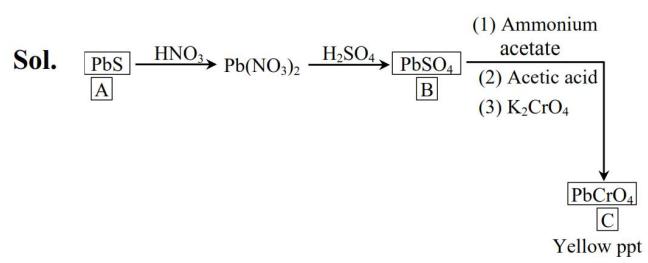

$$\therefore K_p = \frac{x^{3/2}}{(2)^{\frac{1}{2}}} \times P^{\frac{1}{2}}$$

$$\therefore x^{\frac{3}{2}} = \frac{K_p \times 2^{\frac{1}{2}}}{P^{\frac{1}{2}}}$$

$$\therefore x^3 = \frac{K_p^2 \times 2}{P}$$

$$x = \left(\frac{K_p^2 \times 2}{P} \right)^{\frac{1}{3}}$$

56. Identify A, B and C in the given below reaction sequence


$$(1) \text{PbCl}_2, \text{PbSO}_4, \text{PbCrO}_4$$

$$(2) \text{PbS}, \text{PbSO}_4, \text{PbCrO}_4$$

$$(3) \text{PbS}, \text{PbSO}_4, \text{Pb}(\text{CH}_3\text{COO})_2$$

$$(4) \text{PbCl}_2, \text{Pb}(\text{SO}_4)_2, \text{PbCrO}_4$$

Ans. (2)

57. Given below are two statements:

Statement (I): The boiling points of alcohols and phenols increase with increase in the number of C-atoms.

Statement (II): The boiling points of alcohols and phenols are higher in comparison to other class of compounds such as ethers, haloalkanes.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both **Statement I** and **Statement II** are false
- (2) **Statement I** is false but **Statement II** is true
- (3) **Statement I** is true but **Statement II** is false
- (4) Both **Statement I** and **Statement II** are true

Ans. (4)

Sol. B.P. \propto M.W.

B.P. \propto Inter molecular hydrogen bonding

Alcohol & Phenol have intermolecular H-bonding

58. When a non-volatile solute is added to the solvent, the vapour pressure of the solvent decreases by 10 mm of Hg. The mole fraction of the solute in the solution is 0.2. What would be the mole fraction of the solvent if decrease in vapour pressure is 20 mm of Hg ?

Ans. (1)

$$\textbf{Sol.} \quad \therefore P^{\circ} - P \propto X_{\text{solute}}$$

and $\therefore 10 \propto 0.2$

$$\therefore 20 \propto 0.4$$

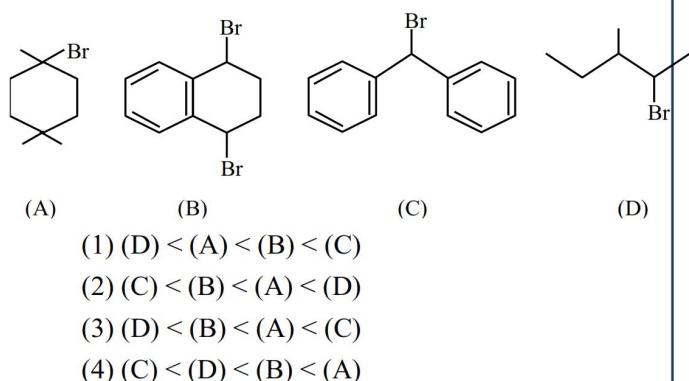
$$\begin{aligned}\therefore X_{\text{solvent}} &= 1 - X_{\text{solute}} \\ &= 1 - 0.4 \\ &= 0.6\end{aligned}$$

59. Given below are two statements:

Statement (I) : For a given shell, the total number of allowed orbitals is given by n^2 .

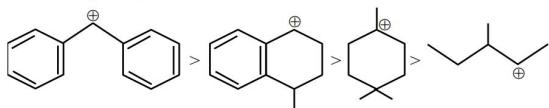
Statement (II) : For any subshell, the spatial orientation of the orbitals is given by $-l$ to $+l$ values including zero.

In the light of the above statements, choose the **correct** answer from the options given below:

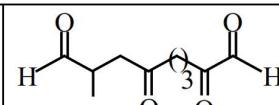
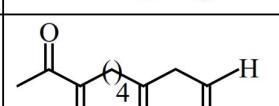
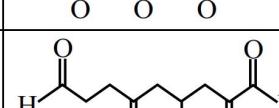
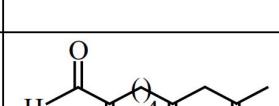

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

Ans. (3)

Sol. For a shell total number of orbitals = n^2


Magnetic quantum number have values $(-\ell \text{ to } +\ell)$ including 0.

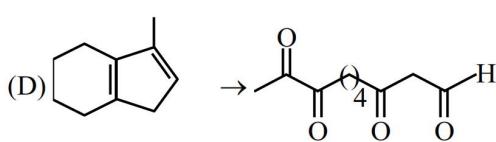
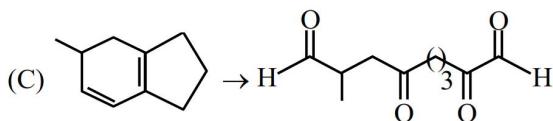
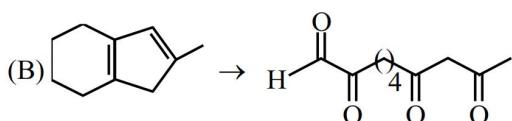
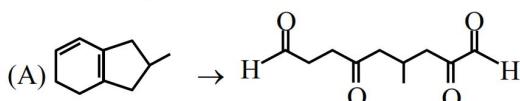
60. The ascending order of relative rate of solvolysis of following compounds is

Ans. (1)

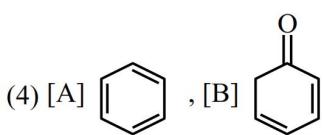
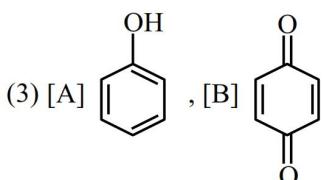
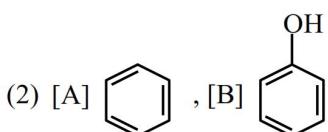
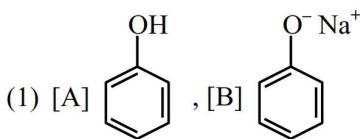
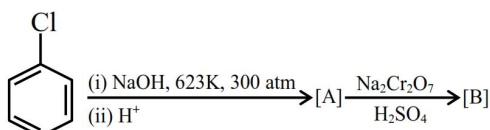
Sol. Solvolysis or S_N1 \propto stability of carbocation
Stability order

61. Match List - I with List - II.





List - I (Isomers of C ₁₀ H ₁₄)		List - II (Ozonolysis product)	
(A)		(I)	
(B)		(II)	
(C)		(III)	
(D)		(IV)	

Choose the **correct** answer from the options given below :

- (1) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- (2) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
- (3) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (4) (A)-(I), (B)-(IV), (C)-(III), (D)-(II)






Ans. (2)

Sol. Ozonolysis product

67. Identify the products [A] and [B], respectively in the following reaction :

Ans. (3)

Sol. A is phenol and B is para benzoquinone.

68. Consider a binary solution of two volatile liquid components 1 and 2 x_1 and y_1 are the mole fractions of component 1 in liquid and vapour phase, respectively. The slope and intercept of the linear plot of $\frac{1}{x_1}$ vs $\frac{1}{y_1}$ are given respectively as :

(1) $\frac{P_1^0}{P_2^0}, \frac{P_2^0 - P_1^0}{P_2^0}$	(2) $\frac{P_2^0}{P_1^0}, \frac{P_1^0 - P_2^0}{P_2^0}$
(3) $\frac{P_1^0}{P_2^0}, \frac{P_1^0 - P_2^0}{P_2^0}$	(4) $\frac{P_2^0}{P_1^0}, \frac{P_2^0 - P_1^0}{P_1^0}$

Ans. (1)

Sol. \because For liquid solution of two liquids '1' and '2'

$$P_1 = P_T y_1 = P_1^0 x_1$$

$$\therefore \frac{P_T}{x_1} = \frac{P_1^0}{y_1}$$

$$\therefore \frac{P_2^0 + x_1(P_1^0 - P_2^0)}{x_1} = \frac{P_1^0}{y_1}$$

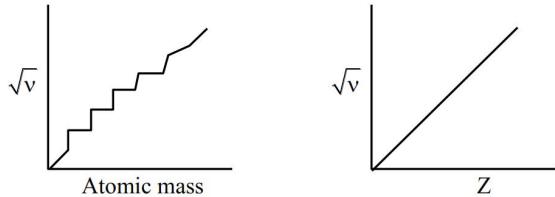
$$\therefore \frac{P_2^0}{x_1} + (P_1^0 - P_2^0) = \frac{P_1^0}{y_1}$$

$$\therefore \frac{1}{x_1} = \left(\frac{P_1^0}{P_2^0} \right) \left(\frac{1}{y_1} \right) + \left(\frac{P_1^0 - P_2^0}{P_2^0} \right)$$

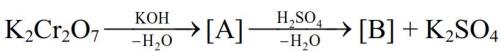
$$\therefore \text{Slope} = \left(\frac{P_1^0}{P_2^0} \right)$$

$$\therefore \text{Intercept} = \left(\frac{P_1^0 - P_2^0}{P_2^0} \right)$$

69. Given below are two statements about X-ray spectra of elements :

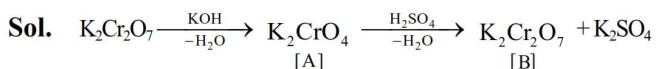

Statement (I) : A plot of \sqrt{v} (v = frequency of X-rays emitted) vs atomic mass is a straight line.

Statement (II) : A plot of v (v = frequency of X-rays emitted) vs atomic number is a straight line. In the light of the above statements choose the **correct** answer from the options given below :


- (1) **Statement I** is true but **Statement II** is false
- (2) Both **Statement I** and **Statement II** are true
- (3) Both **Statement I** and **Statement II** are false
- (4) **Statement I** is false but **Statement II** is true

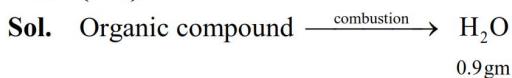
Ans. (3)

Sol.


70. Consider the following reactions

The products [A] and [B], respectively are :

- (1) $\text{K}_2\text{Cr}(\text{OH})_6$ and Cr_2O_3
- (2) K_2CrO_4 and Cr_2O_3
- (3) K_2CrO_4 and $\text{K}_2\text{Cr}_2\text{O}_7$
- (4) K_2CrO_4 and CrO


Ans. (3)

SECTION-B

71. 0.01 mole of an organic compound (X) containing 10% hydrogen, on complete combustion produced 0.9 g H₂O. Molar mass of (X) is _____ g mol⁻¹.

Ans. (100)

$$\therefore \text{mole of H}_2\text{O} = \frac{0.9}{18} = 0.05 \text{ mole}$$

$$\therefore \text{mole of H in H}_2\text{O} = 0.05 \times 2 = 0.1 \text{ mole}$$

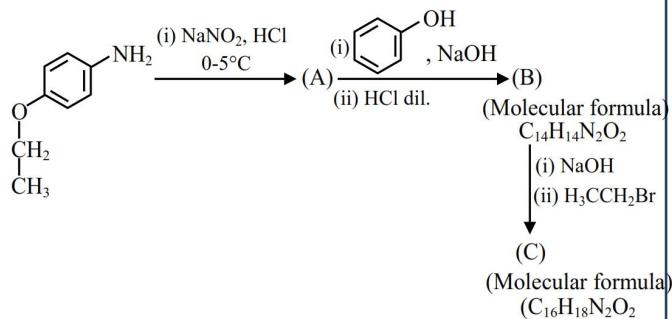
$$= \text{mole of H in 0.01 mole}$$

$$\text{Organic compound}$$

$$\therefore \text{wt of H atom in 0.01 mole compound} = 0.1 \times 1$$

$$= 0.1 \text{ gm}$$

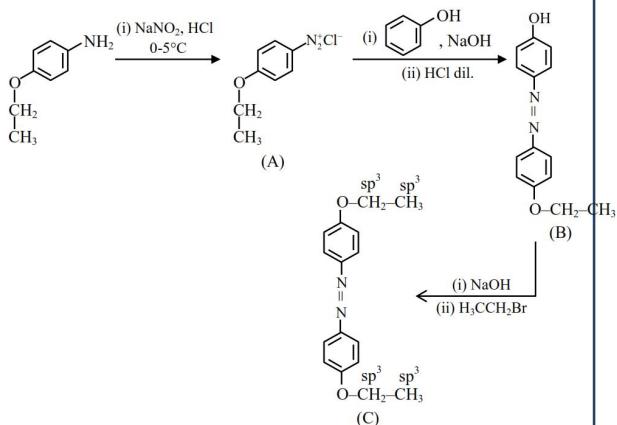
$$\therefore \text{wt of H atom in one mole compound}$$


$$= \frac{0.1}{0.01} = 10 \text{ gm}$$

$$\therefore \text{wt. \% of H} = \frac{\text{wt. of H in one mole compound}}{\text{Molar mass of compound}} \times 100$$

$$10 = \frac{10}{M} \times 100$$

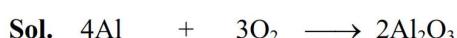
$$\therefore [M = 100]$$


72. Consider the following sequence of reactions.

Total number of sp³ hybridised carbon atoms in the major product C formed is _____.

Ans. (4)

Sol.



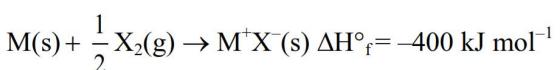
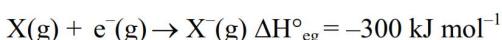
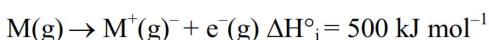
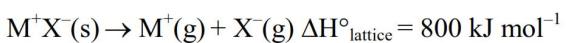
73. When 81.0 g of aluminium is allowed to react with 128.0 g of oxygen gas, the mass of aluminium oxide produced in grams is _____. (Nearest integer)
Given :

Molar mass of Al is 27.0 g mol⁻¹

Molar mass of O is 16.0 g mol⁻¹

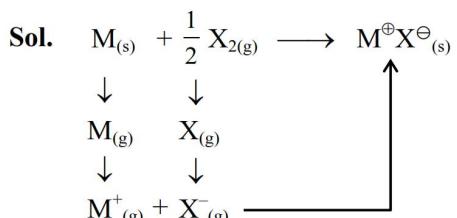
Ans. (153)

$$\frac{81}{27} = 3 \text{ mole} \quad \frac{128}{32} = 4 \text{ mole}$$





Limiting reagent

$$\therefore \text{mole of Al}_2\text{O}_3 \text{ formed} = \frac{1}{2} \times 3 \text{ mole}$$

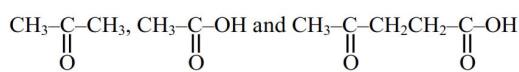
$$\therefore \text{wt. of Al}_2\text{O}_3 \text{ formed} = \frac{3}{2} \times 102$$


$$= 153 \text{ gm}$$

74. The bond dissociation enthalpy of X₂ ΔH_{bond}^o calculated from the given data is _____ kJ mol⁻¹. (Nearest integer)

[Given : M⁺X⁻ is a pure ionic compound and X forms a diatomic molecule X₂ is gaseous state]

Ans. (200)

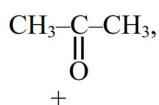
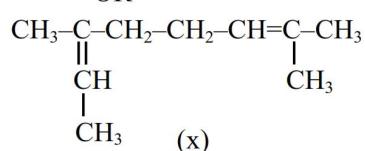

$$\therefore \Delta H_f(MX) = \Delta H_{\text{sub}}(M) + \text{I.E.}(M) + \frac{1}{2}[\text{B.E.}(X - X)]$$

$$+ \text{EG}(X) + \text{L.E.}(MX)$$

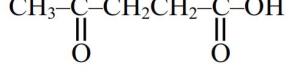
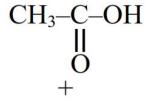
$$- 400 = (100) + (500) + \frac{1}{2}(\text{B.E.}) + (-300) + (-800)$$

$$\therefore \text{B.E.} = 200 \text{ kJ mole}^{-1}$$

75. A compound 'X' absorbs 2 moles of hydrogen and 'X' upon oxidation with $\text{KMnO}_4 \text{ | H}^+$ gives



The total number of σ bonds present in the compound 'X' is _____.

Ans. (27)



Sol. $\text{CH}_3-\text{C}-\text{CH}_2-\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_3$

OR

+

